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Let L be a concrete (=set-representable) quantum logic. Let n be a natural 
number (or, more generally, a cardinal). We say that L admits intrinsic coverings 
of  the order n, and write Le~ , ,  if for any pair A, BeL we can find a collection 
{C~: i~I}, where card I < n  and C~L for any i eI, such that A n B =  U ~ t  c~. 
Thus, in a certain sense, if L~ ,~,, then "the rate of  noncompatibility" of an 
arbitrary pair A, Be L is less than a given number n. In this paper we first consider 
general and combinatorial properties of  logics of  ~ ,  and exhibit typical examples. 
In particular, for a given n we construct examples of  Le~ ,+ t \ cg , .  Further, we 
discuss the relation of  the classes ~,, to other classes of logics important within 
the quantum theories (e.g., we discover the interesting relation to the class of 
logics which have an abundance of Jauch-Piron states). We then consider condi- 
tions on which a class of  concrete logics reduce to Boolean algebras. We conclude 
with some open questions. 

1. P R E L I M I N A R I E S  

Among the quantum logics, whose significance within the axiomatics 
of quantum theories has been advocated in e.g., Birkhoff and von Neumann 
(1936), Varadarajan (1968), Jauch (1968), Piron (1976), Gudder (1979), 
and Pt/tk and Pulmannovfi (1991), a special conceptual role is taken by 
concrete logics. A concrete (quantum) logic L is one which admits a set 
representation. In this paper we shall exclusively deal with concrete logics. 

It is known (e.g., Gudder, 1979; Pt~tk and Wright, 1985) that two sets 
A, B~L form a compatible pair in L if and only if A n B~L. Obviously, 
if L should model a "genuinely quantum experiment" it has to contain 
noncompatible pairs (and, therefore, it cannot be a Boolean algebra). In this 
paper we consider those concrete logics where the relation of noncompat- 
ibility can be "approximated" by elements of L. As we shall see, apart 
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from a potential application in quantum theories, these logics also enjoy 
interesting combinatorial properties. 

Let us now recall the main notion we shall deal with in the sequel. 

Definition 1.1. A concrete logic is a pair (X, L), where L is such a 
collection of  subsets of X which fulfills the following properties: 

(1) ~,~eL. 
(2) A c = X \ A  eL whenever A eL. 
(3) A u B e L  whenever A, B~L with A n B = ~ .  

Thus, concrete logics are (nonvoid) collections of  subsets of a set which 
contain the empty set and which are closed under the formation of  the 
complements and of  the disjoint (finite) unions. Observe also that if A, B s L  
and A ~B,  then B \ A  = (A u Bc)~eL. 

2. CONCRETE LOGICS WITH "COVERING P R O P E R T I E S "  

A concrete logic (X, L) is a Boolean algebra if and only if A n B~L for 
any A, B~L. Thus, for a general logic, it is natural to introduce a classifica- 
tion of  logics expressed in terms of  how many of their elements are needed 
for the covering of intersections. This is done in the following definition. 
[Also, the definition has certain bearing on the physically significant notion 
of  compatibility (respectively noncompatibility), as we indicated in the 
introduction. 

Definition 2.1. Let a be a cardinal. Then c.g~ denotes the class of concrete 
logics which are determined by the following property: If A, B~L with A ~B,  
then there is a collection {C~: iEl}, where card I <  a and CgeL for any i~I, 
such that A n B = Ui~z (7,.. 

Let us first consider the relation between the classes ff~. Let us start 
with a simple observation. [Note that in our classification, the class cg2 is 
exactly the class of all (concrete) Boolean algebras.] 

Proposition 2.2. The following relation holds: ~ 4:~go ~ ~J ~ cg2 ~ cgs. 

Proof The inclusion c~0ccg~cff2~ff3 is obvious. Moreover, ego= 
{ (~ ,  {~})}  : ~ .  The class cgl is the class of  all concrete logics (X, L) such 
that L = { ~ , X } .  Hence, cg0q:ffl. The class cg2 is the class of  concrete 
Boolean algebras. Hence, ff~ 4~ff2. It remains to prove that 52 :~ cg3. Put X =  
[0, 1] and let L be the set of all Borel subsets of  the real interval [0, 1] such 
that their Lebesgue measure is a rational number. Then (X, L)~C~3\~2. 
Indeed, every Borel subset of  [0, 1] is a union of two Borel sets with a 
rational Lebesgue measure and, on the other hand, there are Borel subsets 
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of [0, 1] with a rational Lebesgue measure such that the Lebesgue measure 
of their intersection is not rational. �9 

Proposition 2.3. Let n be a natural number with n>3 .  Then cr ~. 

Proof. The inclusion ~ ,cc~ .+ j  is obvious. Let us construct a concrete 
logic (X, L)eC~,+l\cg,,. Put 

Xo={a,b ,c ,d}  

Lo = {J~, {a, b}, {b, e}, {c, d}, {d, a}, Xo} 

r={0, 1, 2 , . . . , , )  

K, = {~} ~ ({0,y}: y~ r\{0)} 

K2= { Y\B:  B~K, } 

Then (Xo, Lo), ( Y, K1 u/s are concrete logics. Let us inductively define a 
sequence of concrete logics (Xk, Lk), k_> 1. First, for every A cXk - I  • Y, let 
us write 

Px(A) = {ye Y: (x, y )eA} for every X~Xk-i 

PI(A) = {x~Xk-1 : Px(A)~K,} 

P2(A) = {X~Xk-i : Px(A)eK2} 

Now, put 

Xk=Xk_~ • Y 

Lk = { A =Xk: P,(A), P~(A)~Lk-,,  P,(A)= P2(A) c} 

We shall prove (by induction) that (Xk, Lk) is a concrete logic. Indeed, ~ = 
Xk-I • f2~eLk. For any AELk we have Px(Ac) = Y\P~(A). Hence, Pj(A c) = 
P2(A), P2(A c) = Pj(A) and therefore A~ EL~. Finally, suppose that A, B~Lk 
with A c~ B = ~ .  Then Px(A) c~ Px(B) = ~ for every xeXk_ ~ and therefore 
Pz(A) c~P2(B)=~  and PE(A u B)=P2(A)uP2(B)eLk- t .  On the other 
hand, P~(A u B) = P~(A) u Px(B) ~K~ u K2 for every XeXk- j . We infer that 
P,(A u B) =Xk-,\P2(A u B). 

Now, let us define 

X=Xo • f i  Y 
i = 1  

L= Y: Ak~Lk 
k = O  l 

It is easy to see that (X, L) is a concrete logic. It remains to be proved that 
(x, L) E~.+,Ve.. 
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First, suppose that A, BeL.  Then there is a natural number k such that 
A=Ak x IIi~=k+l Y, B=Bk x IIiZk+~ Y, and Ak, BkeLk. Since 

Ac~B=(AknBk)  x ~-I Y 
i = k + l  

yE Y\{O} i = k + 2  

and (Ak n Bk) X {0, y} eLk+l for every y s  Y\{0}, we have (X, L)ecg~+I. 
Finally, let us suppose that the set 

{a}x I - I  Y= {a ,b}x  c~ {a, d I x  
= k = l  k = l  

can be expressed as a union of  m elements of L, where m < n. Let us seek a 
contradiction. There is a natural number k > 1 such that 

{a} x Akj x 
k = l  " =  i = k + l  

for some A k j e L k , j e { l , . . . , m } .  For every xE{a} x II~__-11 Ywe have 

Hence, Px(Ak.j) eK2 and therefore xeP2(Ak,j) for some je  { 1 , . . . ,  m}. Thus, 

{a} • P2(A, j )  • 
k = l  "~ i = k  

where P2(Akj) e Lk- 1 for every j e  { 1 . . . . .  m}. Proceeding by induction, we 
obtain 

{a} x y =  Aoj x 
k = l  j = l  

for some Ao,jeLo, j e  { 1 , . . . ,  m}. This is a contradiction. [] 

Remarks. 1. The construction in Proposition 2.3 can be used also for 
infinite cardinal numbers. It suffices to take Y of cardinality a and proceed 
by transfinite induction up to a. Nevertheless, in the proof  of Proposition 
2.4 we will show a much simpler construction toward this aim. 

2. It is possible to construct a concrete logic (X', L')ecgn+~\cg~ such 
that X '  is a countable set. It suffices to consider only such sequences in X in 
the proof  of Proposition 2.3 that are constant from some index on and put 
L'= {A c~X': AeL}.  
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Proposition 2.4. For every infinite cardinal number a we have 

Proof The inclusion ~ ,  cogs§ is obvious. Let X~, )(2, X3, X4 be disjoint 
sets each of cardinality a. Set X=Xj  w Xa w X3 w X4. Let us define a concrete 
logic (X, L) in the following way: L consists of the sets A c X  such that the 
set (A\B) u (BkA) is finite for some set BE {~,  Xi w X2, )(2 w X3, X3 g X4, 
X4 w X,,  X}. 

Suppose that A, B~L. Since the cardinality of A n B is at most a, 
A n B= Ux~,~ ,  {x}. Since {x}~L for every xeX, we have (X, L)eCg~ +. 

On the other hand, every element of L that is a subset of X~= 
(X~ w X2) n (X~ w )(4) is finite. Thus, X~ cannot be written as a union of less 
than a elements of L and therefore (X, L)~Cg~. �9 

Theorem 2.5. For every cardinal number a we have UtJ<~ cg,~cg~. 

Proof The inclusion Up <~ cga cO go is obvious. According to Proposi- 
tions 2.2-2.4, for every cardinal number /3 there is a concrete logic 
(X,, L,)~cga~k~g,. Let us define the concrete logic (X, L) in the following 
way [it is in fact the 0-1 pasting of logics (X,, Lp); see, e.g., Gudder (1979) 
and Ptfik and Pulmannovfi (1991)]: 

x=[Ix.  

L={~<I~I Ap: Ap~L, and A~r for at most one /3<a}  

Then it is easy to check that (X, L ) 6 ~ \ U , < ~ c g ~  (all operations are 
coordinatewise). �9 

Proposition 2.6. We have U . . . . .  a ~ =~r where card is the class of 
all cardinal numbers. 

Proof The inclusions ~ c~r are obvious. Suppose that 

(X, L) e ~r 

For every A, BeL there is a cardinal number aA,n such that A c~ B is the 
union of less than aA,B elements of L. Then L e ~  for a =  
sup{aAm: A, BeL}. �9 

3. THE CLASSES ~ AND JAUCH-PIRONNESS 

In this section we shall show that there is an interesting link between 
covering properties (and our classes ~ )  and the Jauch-Piron property of 
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states (see, e.g., Jauch, 1968; Piron, 1976; Ptfik and Pulmannov~, 1991). Let 
us first introduce and recall all properties of  states we shall deal with. 

Definition 3.1. Let (X, L) be a concrete logic. A state on (AT, L) is a 
mapping s: L --. [0, 1 ] such that: 

(1) s(A u B)=s(A)+s(B)  whenever A, B~L with A n B=~ZL 
(2) s O ( ) =  1 i f X r  

A state s is called Jauch-Piron if for every A, BEL with s(A) = s ( B ) =  1 there 
is a C~L such that C c A  n B and s(C) = 1. 

A two-valued state s on (X, L) is said to be carried by apoint x ~ X  (and 
denoted by sx) if for every A e L  we have s(A) = 1 iff xeA.  

The set S of  (not necessarily all) states on (X, L) is called full if for 
every A, BEL with A r there is a state s~S such that s(A)~s(B) .  

It is easy to see that s ( ~ ) =  0 and s(A c) = 1 - s ( A )  for every state s on 
a concrete logic (X, L) and for every A ~ L \ { ~ } .  Let us also observe that 
the set of  all states carried by a point is already full. 

A characterization of the class ~ca~d gives the following proposition. 

Proposition 3.2. ~gcard is the class of  all concrete logics such that every 
state on it carried by a point is Jauch-Piron. (In particular, every concrete 
logic of the class c4c, rd has a full set of  two-valued Jauch-Piron states and, 
on the other hand, every concrete logic with a full set of two-valued Jauch- 
Piron states has a representation belonging to the class ~ca~.) 

Proof A concrete logic (X, L) belongs to the class cg~a~d iff for every 
pair A, B~L and for every x~A n B there is a C~L such that x ~ C c A  riB. 
In other words, for every state sx carried by a point x e X  and for every 
A, BeL  with sx(A)=sx(B)=l  there is a CEL such that C c A n B  and 
s~(C) = 1. This proves Proposition 3.2; the remaining part is easy. [] 

Proposition 3.3. Every two-valued state on a concrete logic of the class 
oK3 is Jauch-Piron. On the other hand, there is a concrete logic of the class 
cg3 with a state that is not Jauch-Piron. 

Proof Suppose that (X, L)e~3 .  Suppose further that s is a two-valued 
state on (X, L) and A, B e L  with s(A)=s(B) = 1. There are C, DeL  such 
that A c~ B = C u D .  Since the sets (A\C) ,  ( B \ D ) e L  are disjoint, we have 
either s (A\C)  =0  or s(B\D) =0. Thus, either s(C) = 1 or s (O)=  1. Hence, s 
is Jauch-Piron. 

Let us now take the concrete logic (X, L) e~3\fg2 of the proof  of  Propo- 
sition 2.2 and a Borel subset B of the interval [0, 1] with a nonrational 
Lebesgue measure. Then the state s on (X, L) defined, for every A~L, by 
the formula s(A) = )~ ( A n  B)/2 (B), where 2 denotes the Lebesgue measure, 
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is not Jauch-Piron. Indeed, there are A~, AzeL such that A~ n A 2 = B  and 
for every A EL with A c B we have s(A) < 1. [] 

Proposition 3.4. Suppose that a is a cardinal number with a > 3. Then 
there is a concrete logic of  the class cg~ with a two-valued state that is not 
Jauch-Piron. 

Proof Let us take the concrete logic (X, L) of  the proof  of  Proposition 
2.3 for n = 3  and let us define by induction a two-valued state s on (X, L) as 
follows: 

s({a'b}x[I Y)=s({a'd}xfi Y) 

for every k>_ 1 and for every AkeLk. 
Then for every A e L  with 

Ac{a}• f i  Y=({a'b}• [ 1 Y ) n (  {a'd}x ~I ,=J ~=, 

we have s(A)= 0. Hence, s is not Jauch-Piron. �9 

Theorem 3.5. The class of  concrete logics with the property that every 
two-valued state is Jauch-Piron is a proper subclass of  the class c~o~, where 
co denotes the first infinite cardinal number. 

Proof. Suppose that (X, L) is a concrete logic such that every two- 
valued state on it is Jauch-Piron. Consider the couple (X', L'), where X '  is 
the set of  all two-valued states, and A' belongs to L' if and only if there 
exists A e L  such that A' is exactly the set of all two-valued states s on L with 
s(A) = 1. By applying standard Boolean algebra reasoning, we can prove 
that L' consist of (not necessarily all) clopen subsets of the compact topologi- 
cal space X '  whose base for the open sets is precisely L' [see, e.g., Tkadlec 
(to appear) for the details]. We can view X as a subset of  X '  (we adopt 
the standard identification of  the states carried by points of  X with the 
corresponding points of  X).  Since L' is the base of  open sets of  X '  and since 
X '  is compact, we infer that for every A', B'~L', the set A' n B' is a union 
of  a finite subset of  L'. Since L = {A c X :  A =A'  n X  for some A'eL'}, we 
obtain (X, L ) e ~ , .  [It should be noted that an alternative proof  of  this result 
can be derived from the technique of  the proof  of  Theorem 3.1 in Navara 
and Pt~tk (1989).] [] 
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Theorem 3.6. The class ~gcard is a proper subclass of the class of all 
concrete logics with a full set of two-valued Jauch-Piron states. 

Proof The inclusion follows from Proposition 3.2. Let us take the 
concrete logic (X, L) of the proof of Proposition 2.4 for some infinite a and 
define a concrete logic (X', L') as follows: 

Xt:Xk-) {Xl,X2,x3,x4} (Xu~ {Xl,X2,X3,X4}:~J) 

L'= {A u B :  A s L  and B=  {x,: i~{1, 2, 3, 4} and A n X ,  is infinite}} 

Then the states carried by points x s  {x~, xz, x3, x4} are not Jauch-Piron and 
therefore (X', L ' )~r  [] 

Remarks. (The closedness of cg~ under logic isomorphisms.) 
1. The class of concrete logics with a full set of two-valued Jauch-Piron 

states is the smallest class of concrete logics closed under isomorphisms and 
containing ~c~rd (see Proposition 3.2). 

2. The class of concrete logics with the property that every two-valued 
state is Jauch-Piron is the largest class of concrete logics closed under iso- 
morphisms and contained in cgr [Indeed, every concrete logic (X, L) has 
a representation (X', L') by means of all two-valued states; (X', L')s~ca~d 
implies that every two-valued state is Jauch-Piron; see Proposition 3.2.] 

3. The classes cg0, c4~, ~2 are obviously closed under isomorphisms. On 
the other hand, according to Proposition 3.4 and Part 2 of this remark, c~ 
is not closed under isomorphisms for any a >4. It seems to be an open 
question whether ~3 is closed under isomorphisms. 

4. WHEN DOES A CONCRETE LOGIC HAVE TO BE A 
BOOLEAN ALGEBRA? 

In this section we shall discuss the conditions under which a class of 
concrete logics coincides with the important class ~2 (of concrete Boolean 
algebras). We improve and extend results of Navara and Pt/tk (1989) in 
some places. 

Let us recall that a subset Y in X, where (X, L) is a concrete logic, is 
called dense in L if for every AEL there is a y e a  c~ Y. 

Theorem 4.1. Every concrete logic (X, L) such that each state on it is 
Jauch Piron and such that there is a countable dense set Y in X is a Boolean 
algebra. 

Proof Suppose that A, B s L  with A c~ B=/= ~ .  Then A n B c~ Yis a non- 
empty countable set. Therefore there is a state s=]~y~,4,,8 ~ vaysy, where 
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aye(0, 1) are suitable coefficients such that ~y~A~,B~ ray = 1. Since s(A)= 
s(B) = 1 and since s is Jauch-Piron, there is a Cr C c A  n B, such that 
s ( C ) =  1. Hence, C D A n B n  Y. Let us suppose that C # A n B .  We have 
(A\C) n (B\C)  #(2L Hence, there is a DEL such that D c ( A \ C )  n (B\C)  
and a yr  n Y c  (A n B n Y)\C. This is a contradiction. [] 

In the following proposition we employ a "dimensionlike" notion which 
might also find an application elsewhere. Suppose that (X, L) is a concrete 
logic and n is a natural number. We say that L admits n-dimensional coarsings 
if for any pair A, B~L the following implication holds: If A n B = UJ~I c; ,  
where I is a finite set and CieL for any �9 then there is a collection 
{Di:jeJ}, where card J<_n and DjeL for any jEJ, such that A r i B =  
Uj~Dj  and such that for any C~ (i~I) there is a j e J  with C~cDj. 

Theorem 4.2. Let (X, L) be a concrete logic such that every state on 
(X, L) is Jauch-Piron. Let us suppose that there is a natural number n such 
that L admits n-dimensional coarsings. Then L is a Boolean algebra. 

Proof Suppose that a pair A, B~L is given. We have to show that 
A n B~L. Put SA.8 = {s: s is a state on L with s(A)=s(B) = 1}. It can be 
proved by a standard argument that SA,B is a compact set when it is viewed 
with the pointwise topology [see, e.g., Navara and Ptfik (1989) for details]. 
Now, for any CeL with C c A  n B  put Oc = {s~SA,8: s ( C ) >  1 - l/n}. By 
the Jauch-Piron property of  L, the set O =  {Oc: C~L and C ~ A  n B} forms 
a covering of SA,B. Since every set in O is open, the collection O is an open 
covering of  S~,n and we infer, making use of the compactness of SA,B, that 
there is a finite set {(7,-: i~l} such that SA.B=U~IOc,. Then A n B=  
~ J d  C~ and, moreover, for any state seSA,n there is an index ieI  such that 
s( C~) > 1 - 1/ n. Let now ( Dj : j E J} be an n-dimensional coarsing of { Ci: i e I}. 
If  A nB(~L, then for any j e J  we can find a point xje(A n B)\Dj. Let sj 
denote the state carried by xi. Put s = ( 1 / c a r d  J)~.j~jsj. Then seSA.8 but 
s(C~) <1 - 1 / n  for any ieI. This is a contradiction and therefore A n B~L. 
The proof  is complete. �9 

Corollary 4.3. Let (X, L) be a concrete logic. If every state on (X, L) is 
Jauch-Piron and L contains only finitely many maximal Boolean sub- 
algebras, then L is a Boolean algebra. 

Proof Let n be the number of all maximal Boolean subalgebras of  L. 
Then one can easily prove that L admits n-dimensional coarsings and this 
corollary follows from Theorem 4.2. [] 

It should be noted that this corollary has been independently obtained 
in Rogalewicz (1991) as a consequence of deeper results on (generally non- 
concrete) Jauch-Piron logics. 
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Let us say that a concrete logic (X, L) is downward directed if for every 
A, BeL  with A c ~ B r  there is a C e L \ { ~ }  such that C c A  nB.  (Let us 
observe that every concrete logic of the class cs is downward directed.) 

Proposition 4.4. [See also Navara and Pt~k (1989) and Tkadlec (1991).] 
Every downward-directed logic which is a lattice is a Boolean algebra. 

Proof Let (X, L) be a downward-directed logic which is a lattice. Sup- 
pose that there are A, B~L such that A ^ B # A n B. Since A\(A 6 B)eL  and 
B\(A AB)eL  are not disjoint, there is a C ~ L \ { ~ }  such that 

C c  (A\(A ^ B)) n (B\(A ^ B)) 

Hence, 

C u  (A ^ B ) e L  

and A ^ B ~ C w (A ^ B) c A n B -  a contradiction. [] 

Proposition 4.5. Every downward-directed logic (X, L) such that there 
is no infinite set in L of mutually disjoint elements is a Boolean algebra. 

Proof Suppose that A , B ~ L  with A n B # ~ 5 .  Then there is a set 
C, e L \ { ~ }  such that C, c A  n B. Let us consider sets (A \G) ,  ( B \ G ) e L .  
If  (A\C,) n (B\C,)  ~ ,  then there is a C2eL\{~}  such that 

C 2 ~ ( m \  Cl)  u~ (W\Cl) 

Proceeding by induction, we obtain a finite set { G ,  �9 � 9  C,} c L of mutually 
disjoint elements such that A n B= C~ w. �9 �9 w C, eL. [] 

Proposition 4.6. Every concrete logic (X, L) of the class cg3 that is a or- 
logic (i.e., that is closed under countable unions of mutually disjoint ele- 
ments) is a Boolean algebra. 

Proof Suppose that A, BeL. Let us define by induction Ak, BkEL as 
follows: 

Ao=A, Bo=B 

Ak, Bk~L such that Ak-~ n Bk-1 = Ak W Bk for every k >  1 

Then 

,,4 ["~B~ 0 (A2k-I\A2k) U 0 (n2k-I\B2k)U fi A k e L  
k=l k=l k=l 
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because the right side of  the equality is a countable union of  mutually disjoint 
elements of  L; indeed, 

. .  A k =  A~ = ((A~,) u (A~\A~,) u ( A ; \ A ~ )  u . .  �9 ) e e l  
k = !  k = l  

This completes the proof. [] 

5. OP EN QUESTIONS 

Answers to the following questions are presently not known to the 
authors. 

Question 5.1. Is there a concrete logic not belonging to the class c~ 3 
such that every two-valued state on it is Jauch-Piron? (Compare with Propo- 
sition 3.3.) If  the answer is yes, is the class oK3 closed under isomorphisms? 

Question 5.2. Is there a downward-directed logic that does not have a 
full set of  two-valued Jauch-Piron states? (It is easy to see that a concrete 
logic with a full set of  two-valued Jauch-Piron states is downward directed.) 

The next question is interesting in connection with the classification 
presented in Section 2. 

Question 5.3. Is it true that every concrete logic with the property that 
every two-valued state on it is Jauch-Piron belongs to the class ~ ,  for some 
natural number n >4? (Compare with Proposition 3.4 and Theorem 3.5.) 

The last question seems to be of  major interest. It has already been 
posed in Navara and Ptfik (1989). 

Question 5.4. Does every concrete logic each state of  which is Jauch- 
Piron have to be a Boolean algebra? (Compare with Theorem 4.1 and 
Theorem 4.2.) 

It should be noted that in the ~r-additive case the answer to this question 
is no (Bunce et al., 1985). 
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